Что можно сделать из перегоревшей энергосберегающей лампы

Содержание

Питание паяльника из электронного балласта. Светодиодная лампа из энергосберегающей своими руками

Что можно сделать из перегоревшей энергосберегающей лампы

01.02.2018

С развитием новейших технологий на полках специальных магазинов появилось множество осветительных приборов, каждый из которых отличается индивидуальными характеристиками яркости, экономичности и комфорта для глаз.

Изготовление светодиодной лампы из энергосберегающей без пайки

Много лет изготовители светодиодных ламп старались сконструировать приспособление, схожее по своим свойствам с обычной лампой накаливания, плюс ко всему малое потребление электроэнергии, низкий уровень тепловыделения и влияния на окружающих. В результате потребителям были представлены лампочки.

Специалисты советуют отдавать предпочтение последним моделям, поясняя выбор рядом очевидных преимуществ. Задача усложняется для тех, кто хочет узнать, как переделать энергосберегающее устройство в светодиодное своими руками.

Основные отличия

Светодиодная лампа, так или иначе, обеспечивает помещению более яркое освещение. При напряжении 13 Вт она выдаёт 1000 лм, энергосберегающая — всего 800 лм.

Что касается теплоотдачи, она определяется по показателям поддержания оптимальной температуры в здании, сохранении в подходящем состоянии бытовой техники и мебели. И здесь тоже лидирует светодиодное изделие, обладая теплоотдачей 30,5 градусов при теплоотдаче энергосберегающего устройства 81,7 градусов.

Последнее изделие рассчитано на 8000 часов активной работы, тогда как для первого установлен рекордный срок эксплуатации — до 50000 часов. Причём светодиодная лампа с течением времени не теряет первоначального оттенка освещения и яркости, чего нельзя сказать об энергосберегающей.

Лавры первенства достаются светодиодным источникам и в процессе утилизации, их можно выбросить в мусорный контейнер. , выброшенный на свалку, загрязняет окружающую среду (воздух и грунтовые воды) ядовитыми ртутными парами, в результате чего происходит сильнейшее отравление людей, животных и рыбы. Именно поэтому должна проходить в соответствии с определёнными правилами.

Несмотря на плюсы и минусы, светодиодные и являются взаимозаменяемыми — изготовители побеспокоились о соответствующем размере любой из ламп, и патронов для них.

Общим для двух конкурирующих аналогов является довольно качественный цветовой поток, обеспечивающий высокий уровень комфорта для сетчатки человеческого глаза.

Необходимые материалы

Для того чтобы переделать энергосберегающую лампочку в светодиодную своими руками, необходимо иметь при себе следующий список материалов:

  1. Сгоревшую, вышедшую из строя лампу.
  2. Небольшой кусок стеклотекстолита для соединения деталей между собой. Если есть другие идеи (кроме пайки), можете воспользоваться своей для решения вопроса, как крепить светодиоды.
  3. Комплект радиоэлементов, соответствующих определённой схеме, в том числе светодиоды. Специалисты советуют выбирать для сборки светодиодной лампочки своими руками обычные детали, которые в большом ассортименте представлены на каждом радиорынке, где их стоимость существенно ниже.
  4. Конденсатор объёмом 0,022 Mf, напряжение в котором составляет 400 V, одно сопротивление рассчитано на 1 мОм и пара сопротивлений на 200 Ом.
  5. Светодиоды — дешевле выпаять в нужной численности посредством ленты.

Изготовление схемы

Процесс создания схемы своими руками начинается с вырезания из текстолита окружности, диаметр которой равен 30 мм. Далее нанесите на круге дорожки, хорошо справляется с этой задачей лак для покраски ногтей. После покрытия одного слоя, отставьте деталь в сторону до тех пор, пока она полностью не высохнет.

В это время можно заняться химией, а именно своими руками изготовить массу, растворяющую медь. Для этого следует смешать медный купорос и обычную кухонную соль в соотношении 1:2. Обязательно добавьте небольшой объём тёплой воды (но не горячей!) и в полученную смесь окуните будущую плату. Уже через сутки вы заметите, как медь исчезла с текстолитового круга, осталась только та часть, которая была обработана лаком.

https://www.youtube.com/watch?v=E49U6Oogd7E

На завершающем этапе производится пайка. Однако прежде чем переходить к этой фазе, воспользуйтесь специальным растворителем и избавьтесь от слоя лака. Затем пролужите имеющиеся дорожки.

Возьмите миллиметровое сверло и на участках фиксации элементов сделайте отверстия. Наконец переходите к полноценной пайке схемы. Если вы не новичок в работе с паяльником и имеете определённые навыки, для создания светодиодной лампочки с напряжением 220 V своими руками, точнее, платы её драйвера, достаточно выделить 30 свободных минут.

Процесс сборки не обходится без разбора . Пропилите полотнищем по металлу периметр на самом конце пластика. Вытащите все внутренние детали, оставьте только провода, исходящие от цокольной части старого светильника. Снова вооружитесь паяльником и зафиксируйте плату к этим проводам.

Закрепите схему, оснащённую светодиодами, на внутренней поверхности пластика. Перед окончательной поклейкой включите лампу, если она работает — воспользуйтесь термоклеем.

Как обойтись без пайки

Некоторых может не устраивать пайка, в этом случае в качестве альтернативы драйвер для изделия заменяется полноценным блоком питания, предназначенным для фиксации и работы светодиодной ленты. Именно за счёт применения целого куска ленты, а не её отдельных отрезков, пайка и глобальная переделка не требуются.

С чем могут возникнуть проблемы? С размерами блока питания. Здесь понадобится либо переделать электропроводку от А до Я (освещение здания сводится к одной ветке), либо каждый светильник или ряд изделий запитать другим трансформатором. Если дом оснащён точечными осветительными приборами, можно выделить из цепи самый первый и поместить перед ним блок питания, после чего вместо ламп на 220 V установить самодельные светодиодные модели 12 V.

Как собрать лампочки

Сборка освещающих изделий своими руками осуществляется из пластиковых труб, порезанных на отдельные отрезки. По сторонам труб с помощью паяльника закрепляется светодиодная лента, обязательно сверьтесь с параллельной схемой. На конце пучка проводов разместите два штырька, выступающих в качестве цоколя.

Если светильники оснащены традиционным патроном для фиксации лампы, процесс упрощается в разы — достаточно модернизировать старые энергосберегающие приборы, причём применять внутренние платы уже нет необходимости. Как и в предыдущий раз, образец разбирается, а все «внутренности», кроме проводов цоколя, изымаются. Колпачок, из которого выходили люминесцентные трубки, закрывается цилиндром, выполненным из пластика, на котором фиксируются участки светодиодной ленты. Эти ленты подключаются к проводам из цоколя.

При подключении учитывайте «+» и «-». Плюс желательно припаять к нижней составляющей цоколя. Если подключение не дало результатов, разрешить проблему можно, переподключив выход блока питания к проводам.

Заключение

В любом случае способов перехода на более экономичное освещение предостаточно. Светодиодная лампа, изготовленная на основе энергосберегающей, поможет сэкономить ваши деньги, а сам процесс особенно понравится тем, кто обладает развитым техническим мышлением.

Большое спасибо изготовителям современных энергосберегающих ламп. Качество их продукции постоянно заставляет шевелить мозгами и подталкивает к новым техническим решениям.Вот и в этот раз рассмотрим тему переделки вышедшей из строя энергосберегающей лампы в светодиодную. Сегодня мы пойдем по более традиционному пути с использованием драйвера для светодиода, но… Самой интересной частью переделки является сам светодиод.

На днях мне попали в руки несколько образцов китайской электронной промышленности. Эти светодиоды сами по себе интересны, хотя и не обладают выдающимися характеристиками. Но одно то, что данный светодиод обеспечивает круговую диаграмму направленности, поднимает его на совершенно новый уровень и дает нам в руки прекрасный инструмент для модернизации систем освещения.

В качестве радиатора я использовал уже известный из прошлой статьи алюминиевый универсальный профиль АП888 производства ООО «Юг-сервис». К сожалению у меня остался только обрезок толщиной чуть более 10 мм. Было опасение, что для светодиода мощность 9 Вт его может не хватить. Но стремление провести эксперимент победило.
Маленький недостаток данного профиля по отношению к новому светодиоду – центральное отверстие диаметром 8 мм, а резьба «хвоста» светодиода М6.

Выход самый простой:- рассверливаем отверстие до 10 мм;- в гайку М6 вкручиваем болт;

— аккуратно, ударяя молотком по головке болта, запрессовываем гайку в профиль. Болт нужен для того, чтобы случайно не замять резьбу в гайке.

Читайте также  Почему мигает диодная лампа при выключенном свете

Светодиод 7В, мощностью 7-9 Вт, 12 В, 600-800 мА. В качестве драйвера я использовал широко распространенный драйвер на 700 мА для трех светодиодов того же китайского производства.
Дальше как всегда все просто. Разбирать энергосберегающую лампочку умеем, главное не разбить колбу. И готовим весь комплект для сборки.

1. Просверлить отверстия в крышке корпуса цоколя для крепления радиатора и провода.

Драйвер для светодиода из энергосберегающей лампы легко можно сделать за час, если есть желание.

Если у Вас завалялась старая энергосберегающая лампа, а электронный балласт в ней рабочий, то из него довольно просто можно сделать своими руками драйвер для питания светодиодов. У Вас возникнет вопрос, а как проверить работоспособность балласта? При разборке лампы нужно самой лампы при помощи мультиметра и, если хоть одна из них горелая, то очень велика вероятность того, что балласт находится в рабочем состоянии, а если обе спирали целые, то наверняка есть неисправность в деталях балласта и её нужно устранять.

Если всё валяется в разобранном состоянии, то нужно просто очень внимательно осмотреть все детали балласта и дорожки печатной платы на предмет повреждений. На то, что детали потемневшие не обращайте внимания, просто они работают в очень жёстких температурных условиях.

Если всё в порядке, то можно приступать к сборке драйвера для светодиодов. Проверять все детали балласта не имеет смысла, так как Вы затратите очень много времени на выпаивание и проверку деталей.

Гораздо быстрее будет собрать схему для питания светодиодов от энергосберегающей лампы и с её помощью проверить работоспособность балласта.

Начинать нужно с припайки перемычек из проводков, как на фотографии и выпаивания дросселя. На дроссель нужно намотать дополнительную обмотку из медного провода.

После того как Вы выпаяли дроссель, его нужно разобрать (разъединить магнитопровод), для того чтобы легко намотать провод. Первым делом осторожно снимаем клейкую ленту с поверхности магнитопровода и отлаживаем её в сторонку, так как она нам ещё понадобится для обратной сборки. Осторожно пробуем руками разъединить половинки магнитопровода (он очень хрупкий и легко ломается, так что не прилагайте больших усилий).

Если не получается, то осматриваем все поверхности и, если есть потёки лака, которые приклеили магнитопровод к катушке, то подрезаем и удаляем их простым канцелярским ножом. Не получилось разъединить? Не беда. Дальше нагреваем магнитопровод в местах соединения при помощи паяльника, строительного фена или простой зажигалки (только осторожнее, не повредите намотанный провод).

При нагревании лак размягчается и разъединить магнитопровод будет легче. Получится обязательно.

Дальше на катушку нужно уложить слой электрической изоляции. Провод, который намотан на катушке работает под напряжением сети и, если не изолировать его от будущей обмотки, то велика вероятность проникновения напряжения сети в цепь питания светодиодов, что является угрозой для Вашей жизни. Изоляцию можно взять от старых дросселей, трансформаторов, катушек индуктивности, так же как и провод для намотки дополнительной обмотки. Можно использовать даже бумагу.

Наматываем дополнительную обмотку. Диаметр обмоточного провода нужно подобрать исходя из количества витков, нужных для получения необходимого напряжения и свободного окна в магнитопроводе. Диаметр провода нужен максимально возможный (какой влезет). Чем толще провод, тем большую мощность можно получить. У меня светодиодные сборки 24-36 вольт при токе 280-300 миллиампер и я намотал 30 витков провода диаметром 0.35. Влезло с трудом при плотной намотке, а напряжение получилось 28 вольт. Выходит примерно 1 вольт на виток.

Собираем дроссель и припаиваем его на место. Для питания светодиодов нужен постоянный ток, а у нас получается импульсный. Значит нужен выпрямитель и если Вы не хотите его собирать, то можно взять готовый, например из старого блока питания, как у меня. Обращаю Ваше внимание на то, что получившийся блок питания без нагрузки, в данном случае светодиод, включать нельзя, сгорит.

Схема собрана и осталось только испытать.

При замере тока светодиода получилось 290 миллиампер при напряжении 26 вольт. Идеально. Но транзисторы в балласте греются. Конечно не страшно (они к этому привычные), но лучше их заменить на более мощные или поставить на радиаторы, если светодиод будет работать в длительном режиме.

Надеюсь теперь Вы сами сможете сделать блок питания из энергосберегающих ламп для светодиода. Получившееся устройство можно применить для переделки старых светильников в светодиодные, если всё сделать аккуратно. Я специально делал всё грубо для наглядности и быстроты исполнения.

Удачи Вам.

Источник: https://kupildoma.ru/facade/power-supply-soldering-iron-from-electronic-ballast-led-lamp-from-energysaving-own-hands/

Вторая жизнь: как изготовить из энергосберегающих ламп блок питания

Выход из строя батареи аккумуляторного шуруповерта или другого электроинструмента – событие не самое приятное, особенно если учесть, что стоимость замены этого элемента соизмерима с ценой нового прибора. Но быть может, незапланированных расходов удастся избежать?

Это вполне возможно, если заменить аккумулятор простеньким самодельным блоком питания импульсного типа, с помощью которого инструмент можно будет запитывать от сети. А комплектующие для него можно найти в доступном и повсеместно распространенном изделии – это люминесцентные лампы.

Как устроен балласт энергосберегающей лампочки

Согласно характеристикам энергосберегающих ламп, в цоколе каждой из них предусмотрен так называемый электронный балласт – миниатюрная схема, предотвращающая мигание лампы во время включения и обеспечивающая постепенный разогрев катодных спиралей. Благодаря ей находящийся в колбе газ испускает свечение с частотой от 30 до 100 кГц.

Вид люминесцентной лампочки изнутриУстройство энергосберегающей лампы на примере изделия от Camelon

Работа на столь высоких частотах значительно увеличивает коэффициент энергопотребления, доводя его практически до единицы, чем и обусловлена высокая экономичность ламп данного типа. Дополнительными преимуществами высокочастотного электричества является отсутствие воспринимаемого человеческим ухом шума и электромагнитного поля.

В зависимости от того, как спроектирован электронный дроссель для люминесцентных ламп, она может сразу загораться с полным накалом, либо выходить на максимальную яркость постепенно. Иногда для этого требуется одна или две минуты, что, конечно, не очень удобно. Время разогрева лампы производителями не указывается, и покупатель имеет возможность проверить его, только начав пользоваться изделием.

Подавляющая часть балластных схем, по сути, являющихся преобразователями напряжения, собирается на полупроводниковых транзисторах. В дорогих лампах применена более сложная схема, в дешевых – упрощенная.

Вот чем можно поживиться, имея на руках годную или перегоревшую люминесцентную лампу:

  • биполярные транзисторы, рассчитанные на напряжение до 700 В и токи до 4 А, часто уже с защитными диодами (D4126L или аналогичные);
  • полевые транзисторы (встречаются довольно редко);
  • импульсный трансформатор;
  • дроссель;
  • двунаправленный динистор, аналогичный сдвоенному динистору КН102;
  • конденсатор на 10/50В.

Некоторые виды электронного балласта энергосберегающих ламп при сборке самодельного блока питания выступают не просто источником комплектующих, но представляют собой значительную часть схемы, которую остается только немного дополнить и изменить.

Не очень удачными считаются преобразователи, имеющие в своем составе электролитические конденсаторы. Именно эти элементы особенно часто становятся причиной поломок в электронных устройствах.

Неподходящим окажется балласт, в схему которого включена специализированная микросхема.

Импульсный блок питания и его особенности

В импульсный блок питания (ИБП) преобразование электрической энергии происходит по следующей схеме:

  1. Выпрямитель входной (диодный мост + конденсатор) преобразует входной ток из переменного в постоянный.
  2. Инвертор преобразует поступающий с входного выпрямителя постоянный ток снова в переменный, но уже с частотой выше 10 кГц, то есть исходная частота тока (50 Гц) повышается более, чем в 200 раз.
  3. Переменный высокочастотный ток поступает на импульсный трансформатор, который понижает или повышает напряжение.
  4. Выходной выпрямитель превращает переменный ток с требуемыми параметрами, но высокой частотой, в постоянный.

особенность этого способа преобразования электроэнергии состоит в существенном увеличении частоты переменного тока, поступающего на трансформатор. Это позволяет сделать его значительно более компактным, чем он был бы при частоте в 50 Гц. Но малые размеры – это не единственное преимущество импульсных блоков перед линейными.

ИБП, выполненные с применением современных технологий, практически не имеют энергопотерь, в то время как линейные блоки рассеивают определенную долю энергии на дырочно-электронном переходе транзистора.

Работа инвертора, преобразующего постоянный ток высокочастотный переменный, основана на применении MOSFET-транзисторов, для которых характерна высокая скорость переключения. Быстродействующими должны быть и диоды, устанавливаемые в мосту выходного выпрямителя.

Обычные диоды с током, имеющим частоту выше 10 кГц, работать не смогут. Широко используются диоды Шоттки, которые, в отличие от кремниевых диодов, теряют очень малую долю энергии, работая на высокой частоте.

Читайте также  Как выбрать энергосберегающие лампы для дома

При низком выходном напряжении роль выпрямителя может играть транзистор. Еще вариант – замена трансформатора дросселем. Подобные схемы встречаются в самых простых преобразователях.

Рекомендуем Вам также более подробно ознакомиться со схемой диммера.

Ибп из лампы своими руками

В большинстве случаев для сборки ИБП электронный дроссель следует лишь немного изменить (при двухтранзисторной схеме) за счет перемычки, а затем подключить к импульсному трансформатору и выпрямителю. Некоторые компоненты просто удаляются за ненадобностью.

Для слабых блоков питания (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Достаточно будет добавить несколько витков провода на магнитопровод имеющегося в балласте лампы дросселя, если, конечно, там есть для этого место. Новую намотку можно делать прямо поверх существующей.

Для этого отлично подойдет провод марки МГТФ с изоляцией из фторопласта. Обычно провода требуется мало, при этом почти весь просвет магнитопровода занимает изоляция, что и обуславливает малую мощность таких устройств. Чтобы увеличить ее, понадобится импульсный трансформатор.

Рекомендуем Вам также прочитать про светодиодный аккумуляторный фонарик.

Импульсный трансформатор

Особенностью описываемого варианта ИБП является способность до некоторой степени подстраиваться под параметры трансформатора, а также отсутствие цепи обратной связи, проходящей через этот элемент. Такая схема подключения позволяет обойтись без особо точного расчета трансформатора.

Как показала практика, даже при грубых ошибках (допускались отклонения свыше 140%) ИБП получался работоспособным.

Трансформатор изготавливается на базе все того же дросселя, на котором наматывается вторичная обмотка из лакированного обмоточного медного провода. При этом важно уделить особенное внимание межобмоточной изоляции из бумажной прокладки, ведь «родная» обмотка дросселя будет работать под сетевым напряжением.

Даже если она покрыта синтетической защитной пленкой, поверх нее все-равно необходимо намотать несколько слоев электрокартона или хотя бы обычной бумаги общей толщиной 100 мкм (0,1 мм), а уже поверх бумаги можно укладывать лакированный провод новой обмотки.

Диаметр провода должен быть наибольшим из возможных. Витков во вторичной обмотке будет не много, поэтому их оптимальное количество можно будет подобрать опытным путем.

Используя указанные материалы и технологию можно получить блок питания мощность 20 или чуть более ватт. В данном случае ее значение ограничивается площадью окна магнитопровода и, соответственно, максимальным диаметром провода, который удается там разместить.

Выпрямитель

Во избежание насыщения магнитопровода в ИБП применяют только двухполупериодные выходные выпрямители. В том случае, если импульсный трансформатор работает на понижение напряжения, наиболее экономичной является схема с нулевой точкой, но для ее реализации понадобится сделать две полностью симметричные вторичные обмотки. При ручной намотке можно выполнить обмотку в два провода.

Стандартный выпрямитель, собранный по схеме «диодный мост» из обычных кремниевых диодов, для импульсного ИБП не подходит, поскольку из 100 Вт передаваемой мощности (при напряжении 5 В) на нем будет теряться около 32 Вт или более. Собирать же выпрямитель на мощных импульсных диодах будет слишком дорого.

Наладка ИБП

После сборки ИБП его необходимо подключить к максимальной нагрузке и проверить, насколько сильно греются транзисторы и трансформатор. Предел для трансформатора – 60 – 65 градусов, для транзисторов – 40 градусов. При перегреве трансформатора увеличивают сечение провода или габаритную мощность магнитопровода, либо выполняют оба действия совместно. Если трансформатор сделан из дросселя балласта лампы, увеличить сечение провода, скорее всего, уже не получится и придется ограничивать подключаемую нагрузку.

Вариант ИБП с повышенной мощностью

Иногда стандартной мощности электронного балласта лампы бывает недостаточно. Представим себе ситуацию: имеется лампа мощностью 23 Вт, а необходимо получить источник питания для зарядного устройства с параметрами 12В/8А.

Для того чтобы осуществить задуманное, придется раздобыть компьютерный блок питания, оказавшийся по каким-либо причинам невостребованным. Из этого блока следует изъять силовой трансформатор вместе с цепочкой R4C8, которая выполняет функцию защиты силовых транзисторов от перенапряжения. Силовой трансформатор следует присоединить к электронному балласту вместо дросселя.

Схема сборки ИБП из энергосберегающей лампочки

Опытным путем было установлено, что данный тип ИБП позволяет снимать мощность до 45 Вт при незначительном перегреве транзисторов (до 50 градусов).

Чтобы избежать перегрева, в базах транзисторов необходимо установить трансформатор с увеличенным сечением сердечника, а сами транзисторы установить на радиатор.

Возможные ошибки

Как уже говорилось, включение в схему в качестве выходного выпрямителя обычного низкочастотного диодного моста нецелесообразно, а при повышенной мощности ИБП делать этого тем более не стоит.

Также бессмысленно пытаться ради упрощения схемы наматывать базовые обмотки непосредственно на силовом трансформаторе. В отсутствие нагрузки будут иметь место значительные потери из-за того, что в базы транзисторов будет поступать ток максимальной величины.

Применяемый трансформатор с увеличением тока нагрузки увеличивает и ток в базах транзисторов. Практика показывает, что при достижении мощностью нагрузки значений в 75 Вт в магнитопроводе трансформатора имеет место насыщение. Это приводит к ухудшению характеристик транзисторов и их перегреву.

Во избежание этого можно самому намотать трансформатор тока, в два раза увеличив сечение сердечника или сложив вместе два кольца. Также можно в два раза увеличить диаметр провода.

Существует способ избавиться от базового трансформатора, выполняющего промежуточную функцию. Для этого токовый трансформатор через мощный резистор подключают к отдельной обмотке силового, реализуя схему обратной связи по напряжению. Недостатком данного варианта является то, что токовый трансформатор при этом постоянно работает в режиме насыщения.

Нельзя подключать трансформатор параллельно с имеющимся в балластном преобразователе дросселем. Вследствие уменьшения суммарной индуктивности будет увеличена частота блока питания. Такое явление приведет к увеличению потерь в трансформаторе и перегреву транзисторов выходного выпрямителя.

Следует учитывать повышенную чувствительность диодов Шоттки к превышению значения обратных напряжения и тока. Попытка установить, скажем, 5-вольтовый диод в 12-вольтовую схему, скорее всего, приведет к выходу элемента из строя.

Не пытайтесь заменить транзисторы и диоды отечественными, например, КТ812А и КД213. Это однозначно приводит к ухудшению рабочих характеристик устройства.

Подключение ИБП к шуруповерту

Электроинструмент необходимо разобрать, отвинтив все шурупы. Обычно корпус шуруповерта состоит из двух половинок. Далее следует найти провода, которыми двигатель подключается к батарее. Соединить эти провода с выходом ИБП можно с помощью пайки или термоусадочной трубки, вариант со скрутками нежелателен.

Для ввода провода от блока питания в корпусе инструмента необходимо выполнить отверстие. Важно предусмотреть меры, предотвращающие вырывание провода в случае неосторожных движений или случайных рывков. Самый простой вариант – обжать провод внутри корпуса у самого отверстия клипсой из сложенного пополам коротенького отрезка мягкой проволоки (подойдет алюминий). Имея превосходящие диаметр отверстия размеры, клипса не даст проводу оторваться и выпасть из корпуса в случае рывка.

Как видно, энергосберегающая лампочка, даже отработавшая положенный ей срок, может принести немалую пользу своему владельцу. Собранный на базе ее комплектующих ИБП может с успехом применяться в качестве источника энергии для аккумуляторного электроинструмента или зарядного устройства.

Данное видео расскажет Вам как собрать блок питания из энергосберегающих ламп.

Источник: http://FineLighting.ru/texnologii-i-normy/sistemy/bloki-pitaniya/vtoraya-zhizn-kak-izgotovit-energosberegayushhix-lamp.html

Как сделать блок питания из энергосберегающей лампы своими руками

Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Далее представлена схема функционирования балласта люминесцентной лампочки.

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 — выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 — выступают в качестве мостов-выпрямителей.
  3. L0, C0 — являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 — представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 — облегчают начало работы преобразователей.
  6. R7, R8 — оптимизируют закрытие транзисторов.
  7. R6, R5 — образуют границы для электротока на транзисторах.
  8. R4, R3 — используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 — защищают транзисторы БП от возвратного тока.
  10. TV1 — является обратным коммуникативным трансформатором.
  11. L5 — балластный дроссель.
  12. C4, C6 — выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 — трансформатор импульсного типа.
  14. VD14, VD15 — импульсные диоды.
  15. C9, C10 — фильтры-конденсаторы.
Читайте также  Почему мигает энергосберегающая лампа при выключенном свете

Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение — 12 В;
  • сила тока — 2 А.

Вычисляем мощность:

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

Новые компоненты

На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

Самостоятельное изготовление блока питания

ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

Наладка источника бесперебойного питания

Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить — не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора — 65 градусов, а для транзисторов — 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант — сокращение нагрузки.

ИБП высокой мощности

В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

Потенциальные ошибки

Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.

Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение.

Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец.

Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Как сделать блок питания из энергосберегающей лампы своими руками

Источник: https://220.guru/elektrooborudovanie/komponenty/blok-pitaniya-iz-energosberegayushhej-lampy.html

Понравилась статья? Поделить с друзьями: