Последовательное соединение лампочек одинаковой мощности

Содержание

Последовательное и параллельное соединение лампочек — схемы применения в быту

Последовательное соединение лампочек одинаковой мощности

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.
Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

Где же можно в быту, применить такую казалось бы не практичную схему?

Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.

Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.

При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).

А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.
Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева. То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.

Напряжение на них подается одновременно и всегда составляет номинальные 220В.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Источник: https://svetosmotr.ru/posledovatelnoe-i-parallelnoe-soedinenie-lampochek/

Различные способы подключения одной, двух и более ламп

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Читайте также  Как починить энергосберегающую лампочку

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала.

Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания.

Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза.

Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится.

Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них.

Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

о подключении ламп

Источник: https://amperof.ru/osveshenie/podkluchenie/razlichnye-sposoby-podklyucheniya-odnoj-dvuh-i-bolee-lamp.html

Последовательное и параллельное соединение лампочек

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Люстра с большим числом лампочек

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения.

При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы.

Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.

Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Параллельное соединение лампочек

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Читайте также  Как сделать переноску электрическую с лампочкой

Источник: https://LampaGid.ru/vidy/lampy-nakalivaniya/posledovatelnoe-i-parallelnoe-soedinenie

Параллельное подключение лампочек

> Лампы электрические > Параллельное подключение лампочек

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.

Параллельное подключение светильников к проводам питания

В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.

На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.

Схема подключений

Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:

  • проводники графически обозначаются прямыми неразрывными линиями;
  • соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
  • электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.

Параллельное и последовательное соединение

Параллельное соединение проводников

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.

Схема параллельного соединения лампочек

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):

I = I1 + I2 + I3.

Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):

Р = Р1 +Р2 + Р3.

Сопротивление (R) для трех нагрузок определяется из выражения:

1/R = 1/R1 + 1/R2 + 1/R3,

где R1, R2, R3 – сопротивления лампочек.

Типы ламп и схемы подключения

Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.

Галогенные

Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).

Схема подключения галогенной лампы

Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках. Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.

Схема подключения галогенных ламп

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).

Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.

Пример расчета

Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.

Потери в проводах питания лампочек

Напряжение на первой и второй лампочках составят:

V1 = VR(2r + R)/(4r2 +6rR + R2) = 10,34 В,

V2 = VR2/(4r2 +6rR + R2) = 9,54 В.

Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.

Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.

Люминесцентные

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше. Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается.

На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L1) и (L2). Но к лампе (2) подключен дополнительный балластный конденсатор (Сб), благодаря которому создается сдвиг тока по фазе на 600.

Схема двухлампового светильника

В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

про подключения

Последовательное и параллельное соединение аккумуляторов

Про особенности параллельного и последовательного подключения рассказывает видео ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.

Источник: https://elquanta.ru/lampa/parallelnoe-podklyuchenie-lampochek.html

Параллельное и последовательное соединение лампочек — схемы подключения

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное — схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

на тему

Источник: https://proprovoda.ru/osveshhenie/lampy/parallelnoe-i-posledovatelnoe-soedinenie-lampochek.html

Последовательное и параллельное соединение ламп

Здравствуйте уважаемые читатели сайта sesaga.ru. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания.

В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту.

Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:

Следующий момент Вы должны понять и запомнить:

Соединительные провода на схемах показываются линиями. Места соединения трех и более проводов показываются точками, а если провода пересекаются без соединения, то в месте их пересечения точка не ставится.

На рисунке ниже показано, когда провода просто пересекаются, то есть проходят рядом и не касаются друг друга, и когда провода уже соединены между собой — об этом говорит точка, стоящая в пересечении.

А теперь рассмотрим виды соединений:

Последовательное соединение ламп накаливания

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Читайте также  Почему горит светодиодная лампочка при выключенном свете

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельное соединение ламп

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

Источник: https://sesaga.ru/posledovatelnoe-i-parallelnoe-soedinenie-lamp.html

Последовательное и параллельное соединение лампочек: схемы и примеры

Нет ничего проще для электрика, чем подключить светильник. Но если приходится собирать люстру или бра с несколькими плафонами, часто возникает вопрос: «Как лучше соединить?» Чтобы понять, чем отличается последовательное и параллельное соединение лампочек – вспомним курс физики за 8 класс. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях 220 V AC, эта информация справедлива и для других напряжений и токов.

Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, – распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.е.:

I=U/Rобщ,

Где Rобщ – сумма сопротивлений всех элементов последовательно соединенной цепи.

Чем больше сопротивление – тем меньше ток.

Подсоединение потребителей последовательно

Чтобы соединить два и больше источника света последовательно, нужно концы от патронов соединить между собой так, как изображено на картинке, т.е. у крайних патронов останется по одному свободному проводу, на которые мы и подаем фазу (P или L) с нулем (N), а средние патроны соединяются друг с другом одним проводом.

Через лампу 100 Вт, при напряжении 220 В, течет ток чуть меньше чем 0,5 А. Если соединить две по этой схеме, ток упадет в два раза. Лампы будут светить в половину накала. Потребляемая мощность не сложится, а уменьшиться до 55 (примерно) с обеих. И так далее: чем больше ламп, тем меньше ток и яркость каждой отдельной.

Преимущество:

  • ресурс ламп накаливания возрастает;

Недостатки:

  • если перегорает одна – не горят и остальные;
  • если использовать приборы разной мощности, те, что больше, – практически не будут светиться, те, что меньше, – будут светиться нормально;
  • все элементы должны быть одинаковой мощности;
  • нельзя в светильник с таким соединением включать энергосберегающие лампы (светодиодные и компактные люминесцентные лампы).

Такое соединение отлично подходит в ситуациях, когда нужно создать мягкий свет, например, для бра. Так соединяются светодиоды в гирляндах. Огромный минус – это то, что при сгорании одного звена не светят и другие.

Параллельное соединение

В цепях, соединенных параллельно, к каждому из элементов прикладывается полное напряжение источника питания. При этом ток, протекающий через каждую из ветвей, зависит только от ее сопротивления. Провода от каждого патрона соединены между собой обоими концами.

Преимущества:

  • если одна лампа перегорит – остальные продолжат выполнять свои функции;
  • каждая из цепей светит в полный накал независимо от своей мощности, потому что к каждой приложено полное напряжение;
  • можно вывести из светильника три, четыре и больше проводов (ноль и нужное количество фаз к выключателю) и включать нужное количество ламп или группу;
  • работают энергосберегающие лампочки.

Недостатков нет.

Чтобы включать свет по группам, соберите такую схему либо в корпусе светильника, либо в распределительной коробке.

Каждая из ламп включается своим выключателем, их в этом случае три, а включены две.

Законы последовательного и параллельного соединения проводников

Для последовательного соединения важно учитывать, что ток через все лампы протекает один и тот же. Это значит, что чем больше элементов в цепи, тем меньше через нее протекает ампер. Напряжение на каждой лампе равняется произведению тока на ее сопротивление (закон Ома). Увеличивая количество элементов, вы будете понижать напряжение на каждом из них.

В параллельной цепи каждая ветвь берет на себя необходимое ей количество тока, а напряжение прикладывается то, которое выдает источник питания (напр. Бытовая электросеть)

Смешанное соединение

Другое название этой схемы последовательно-параллельная цепь. В ветвях параллельной цепи включено последовательно несколько потребителей, например, накаливания, галогенных или светодиодных. На LED-матрицах часто применяется такая схема. Этот способ дает некоторые преимущества:

  • подключение отдельных групп лампочек на люстре (например, 6-рожковой);
  • если сгорит лампа – не будет гореть только одна группа, из строя выйдет только одна последовательная цепь, остальные, параллельно стоящие, будут светить;
  • группируйте лампы последовательно одной мощности, а параллельные цепи – разной, если это нужно.

Недостатки те же, что присущи последовательным цепям.

Схемы подключения других типов ламп

Чтобы правильно подключить другие виды осветительных приборов, нужно сначала узнать их принцип работы и ознакомиться со схемой подключения. Каждый из типов ламп требует определенных условий для работы. Процесс накаливания спирали совсем не предназначен для излучения света. В области больших мощностей и площади их заметно потеснили газоразрядные приборы.

Люминесцентные лампы

Кроме ламп накаливания, часто применяются и галогенные, и люминесцентные трубчатые лампы (ЛЛ). Последние распространены в административных зданиях, боксах для покраски автомобилей, гаражах, производственных и торговых помещениях. Немного реже их применяют дома, например, на кухне для подсветки рабочей зоны.

ЛЛ нельзя подключить напрямую к сети 220 В, для розжига нужно высокое напряжение, поэтому используется специальная схема:

  • дроссель, стартер, конденсатор (не обязательно);
  • электронный балласт.

Первая схема применяется все реже, отличается меньшим КПД, гудением дросселя и мерцанием светового потока, который часто не заметен глазу. Подключение электронного балласта часто изображено на корпусе.

Подключается либо одна лампу, либо две последовательно, в зависимости от ситуации и того, что есть в наличии, также и с электронным балластом.

Конденсатор между фазой и нулем нужен для компенсации реактивной мощности дросселя и снижения сдвига фазы, цепь запустится и без него.

Обратите внимание на то, как подсоединяются лампы, в освещении люминесцентным светом нельзя пользоваться теми же правилами, что и при работе с лампами накаливания. Похожим образом обстоит дело и с ДРЛ и ДНАТ-лампами, но они редко встречаются в быту, чаще в промышленных цехах и уличных фонарях.

Галогенные источники света

Этот тип часто применяется в точечных светильниках на подвесных и натяжных потолках. Подходят для освещения мест с повышенной влажностью, поскольку выпускаются для работы в цепях с пониженным напряжением, например, 12 вольт.

Для питания используют сетевой трансформатор 50 Гц, но габариты велики и со временем он начинает гудеть. Лучше для этого подойдет электронный трансформатор, на него приходит 220 В с частотой 50 Гц, а уходит 12 В переменного тока с частотой в несколько десятков кГц. В остальном подключение аналогичное с лампами накаливания.

Заключение

Правильно собирайте схемы в светильниках. Не подключайте энергосберегающие лампы последовательно и придерживайтесь схемы включения люминесцентных и галогенных светильников. Энергосберегающие лампы «не любят» пониженное напряжение и быстро сгорят, а люминесцентный светильник может и вовсе не зажечься.

Для подключения освещения подойдут клеммные колодки или зажимы Wago, тем более, если проводка алюминиевая, а провода у светильника медные. Главное – соблюдайте правила безопасности при работе с электрическими приборами.

Последовательное и параллельное соединение лампочек: схемы и примеры

Источник: https://220.guru/osveshhenie/istochniki-sveta/posledovatelnoe-i-parallelnoe-soedinenie-lampochek.html

Понравилась статья? Поделить с друзьями: